CARBON[®] DIGITAL LIGHT SYNTHESIS™

General process information

DESCRIPTION	Carbon's Digital Light Synthesis (DLS) is a resir a series of layered patterns as the build platfor state part. After build, some of the resins will a DLS process produces isotropic material prope			
BENEFITS OF DLS	 Production-grade parts off the printe Isotropic material properties Smooth surface finish and fine detail High throughput 			
BUILD VOLUME	M2 Printer ~189 x 118 x 326 mm ~7.4 x 4.6 x 12.8 in 	L1 Prir • ~400 • ~15.7		
MIN. FEATURE SIZE	 Material dependent, typically: ~0.25 - 0.5 mm ~0.01 - 0.02 in 			
BEST ACHIEVABLE TOLERANCE	 Material dependent, typically at least: +/- 0.3 mm +/- 0.012 in 	Valida engine quality		
LEAD TIME	 Typically 4 business days, can expedite orders to as low as 2 business days. 			

-based polymer additive manufacturing process. Light is projected in n rises, selectively solidifying the UV-curable resin to achieve a green so require a secondary thermal cure to complete the process. The rties.

nter 0 x 250 x 460 mm 7 x 9.8 x 18.1 in

ated builds can hold tighter tolerances, but require review from eering team. Costs will be adjusted to reflect inspection and by fallout.

Materials (continued on pages 17 and 18)

RIGID MATERIALS

MATERIAL	COLOR	DESCRIPTION
Rigid Polyurethane - RPU 70	Black	 Best for aesthetic prints Great combination of strength, stiffness, Versatile in printing capabilities Better built for high volume production
Rigid Polyurethane - RPU 130	Black	 Best for aesthetic prints and good for hig Great combination of strength, stiffness, Versatile in printing capabilities Requires a heated cassette for printing, r
Epoxy - EPX 82	Black	 Temperature resistant, strong, and tough Comparable to lightly glass-filled thermo Perfect for connectors, brackets, and hou Better built for high volume production
EPX 86	Black	 Flame retardant variant of EPX 82 Prints as easily as EPX 82, with similar de Good chemical resistance and functional Higher stiffness and more brittle than EP

Finishing / post-processing options

• Painting

Press-fit inserts

• Bead blasting

Digital Texturing

, and toughness

gh durability dampening applications , toughness, and ductility

making cleaning and support removal difficult compared to RPU 70

n oplastics usings

esign rules I toughness PX 82

Materials (continued)

KIUID MAIEKIALS	R	G	D	Μ	AT	Ε	RI	A	L	S	
-----------------	---	---	---	---	----	---	----	---	---	---	--

MATERIAL	COLOR	DESCRIPTION
Urethane Methacrylate - UMA 90	Select RGB colors	 Perfect for manufacturing jigs, fixtures, and Comparable to conventional SLA resins Ideal for quick and aesthetic prints
IND 405	Clear	 Clear, semi-rigid, and very flexible For when translucence is an aesthetic rec
Medical Polyurethane - MPU 100	White	 Biocompatible, sterilizable, and durable Perfect for medical products and devices
Cyanate Ester - CE 221	Orange	 Highly temperature resistant and stiff Comparable to glass-filled nylon Perfect for applications that need long-te assemblies, etc.

Finishing / post-processing options

• Painting

Press-fit inserts

• Bead blasting

Digital Texturing

and general-purpose prototypes

quirement but perfect optical clarity is not

s, consumer health care products, and drug contact

erm thermal stability such as under-the-hood components, electronics

Materials (continued)

NON-RIGID MATERIALS				
MATERIAL	COLOR	DESCRIPTION		
IND 147 - HDT 230	Black	 Highly temperature resistant and stit Ideal for tooling and molding applications Perfect for applications that need lor electronics assemblies, etc. 		
Elastomeric Polyurethane - EPU 40	Black	 Rubbery, elastic material Highly impact and tear resistant Better built for dampening than EPU Better fine feature resolution than El 		
Elastomeric Polyurethane - EPU 41	Linen green	 Rubbery, elastic material Highly impact and tear resistant Better built for energy return than EF Better for larger volumes than EPU 4 Easier to print than EPU 40 		
Silicone - SIL 30	Light gray	 Soft touch, biocompatible, and tear r Sterilizable, good for skin contact me Perfect for comfortable skin contact 		

Finishing / post-processing options

- Painting
- Bead blasting

- Press-fit inserts
- Digital Texturing

ff tions. ng-term thermal stability such as under-the-hood components,
41 PU 41
PU 40 40

resistant

edical applications

products such as headphones, wristbands, and attachment wearables

General process information

DESCRIPTION	The most common additive method on the mark which is melted down and deposited layer-by-lay
BENEFITS OF FDM	 Engineering-grade materials Industry certifications Large build volume
MAX. PART SIZE	 914 x 610 x 914 mm 36.0 x 24.0 x 36.0 in
MIN. FEATURE SIZE	• 0.4 mm • 0.016 in
BEST ACHIEVABLE TOLERANCE	• 0.381 mm • 0.015 in
LEAD TIME	 As low as 3 business days

ket. This process uses a spool of plastic filament yer until a 3-dimensional part is created.

Materials (continued on page 27)

MATERIAL	COLOR
Ultem 1010	Tan
Ultem 9085	Black, Tan
Ultem 9085 CG	Tan
PC-10	White
PC-ABS	Black
ASA	Black, Dark Gray, White, Ivory, Light Gray, Red, Orange, Yellow, Green, Dark Blue
ABS-ESD7	Black

Finishing / post-processing options

• Painting

• Bead blasting

Helicoil inserts

• Sanding

Heat staked inserts

LAYER HEIGHT OPTIONS

0.010", 0.013"

0.010", 0.013"

0.010", 0.013"

0.005", 0.007", 0.010", 0.013"

0.005", 0.007", 0.010", 0.013"

0.005", 0.007", 0.010", 0.013", 0.020"

0.007", 0.010"

Materials (continued)

MATERIAL	COLOR
ABS-M30i	lvory
ABS-M30	Black, White, Gray, Ivory, Red, Blue
PPSF	Tan
ST-130	Natural
Nylon 6	Black
Nylon 12	Black
Nylon 12CF	Black
Antero 800NA	Tan
Antero840CN03	Black

Finishing / post-processing options

- Painting
- Heat staked inserts

• Bead blasting

• Sanding

Helicoil inserts

LAYER HEIGHT OPTIONS

0.005", 0.007", 0.010", 0.013"

0.005", 0.007", 0.010", 0.013"

0.010"

0.013"

0.010", 0.013"

0.007", 0.010", 0.013"

0.010"

0.010"

0.010"

HP MULTI JET FUSION (MJF)

HP MULTI JET FUSION (MJF)

General process information

DESCRIPTION	HP MJF is a powder bed fusion process. Our MJF projects are produced on 4200 and apply fusing and detailing agent, and thermal energy, to layers of powder in order to f then re-apply a new layer of powder to the top of the build and repeat the process un excavation from the powder bed, finished parts undergo bead-blasting to achieve op			
BENEFITS OF HP MJF	 Produces fine features and More consistent isotropic Does not require supports High throughput 	d complex parts mechanical properties in the Z (self-supporting) allowing mo	Z build direction when com re design freedom	
BUILD VOLUME	 375 x 375 x 280 mm 14.8 x 14.8 x 11.0 in 			
MIN. FEATURE SIZE	0.5 mm0.02 in			
BEST ACHIEVABLE TOLERANCE	 Features in X-Y Dimension (0-100mm feature size) +/- 0.3 mm +/- 0.012 in 	 Features in X-Y Dimension (>100mm feature size) +/- 0.3% of feature size 	 Features in Z Dimension (0-100mm feature size) +/- 0.4 mm +/- 0.016 in 	
LEAD TIME	 As low as 4 business days As low as 5 business days As low as 5 business days 	for Nylon PA 12 for 40% Glass Bead Filled Nyl for TPA	on PA 12	

5200 printers which selectively form solid parts. The printers ntil the print is complete. After otimal surface finishes.

pared to other additive processes

Features in Z Dimension (>100mm feature size)

• +/- 0.4% of feature size

HP MULTI JET FUSION (MJF)

Materials

MATERIAL	COLOR	DESCRIPTION
Nylon PA 12	Gray or Black	 Fine detail and high dime Produces strong quality Provides excellent chem Creates complex parts a Ideal for complex assem Biocompatibility – Meets Devices Certifications – UL 94, U
Glass Bead Filled Nylon PA 12	Gray or Black	 Produces stiff, functional Provides dimensional st Ideal for applications red Certifications – UL 94, U
TPA (Thermoplastic Polyamide)	Gray or Black	 Springy with some resist Parts that need to bend,

Finishing / post-processing options

- Painting • Bead blasting
- Black dyeing

Heat staked inserts

- Press-fit inserts
- Digital texturing

ensional accuracy parts nical resistance to oils, greases, aliphatic hydrocarbons, and alkalies and lattice structures nblies, housings, enclosures, and connectors ts USP Class I-IV and US FDA guidance for intact Skin Surface

UL 746A

al parts tability along with repeatability quiring high stiffness like enclosures, housings, fixtures, and tooling UL 746A

tance but not as soft as silicone or TPE

- Clear coat
- Laser surface decorating /
- Vapor smoothing

etching

HP MULTI JET FUSION (MJF) - COLOR

General process information

DESCRIPTION	The HP Jet Fusion 580 Color Printer is a first-gen basic Multi Jet Fusion technology as the 4200/52 color. It receives Cyan, Magenta, Yellow, and Blac		
BENEFITS OF HP MJF COLOR	 Produces full-spectrum color parts with a voxe Produces accurate, functional parts with intrication 		
MAX. PART SIZE	 332 x 190 x 248 mm 13.1 x 7.5 x 9.8 in 		
MIN. FEATURE SIZE	・0.5 mm ・0.02 in		
BEST ACHIEVABLE TOLERANCE	 Features in X-Y dimension +/- 0.4 mm +/- 0.016 in 	Features in Z dime • +/- 0.8 mm • +/- 0.031 in	
LEAD TIME	 As low as 5 business days 		

neration, full color, polymer 3D printer. The 580 uses the same 200 printer models, but with the added capability of printing in ck colored agents (CMYK).

el-control system ate detail

ension

HP MULTI JET FUSION (MJF) - COLOR

Materials

MATERIAL	COLOR	DESCRIPTIO
	All CMYK values are accepted, but system	Produces
	is not capable of a perfect color match.	 Provides e
CB Nylon PA 12	Part geometry, orientation, and nesting	hydrocarb
	position all affect the color uniformity and	 Ideal for co
	repeatability	presentati

Color demonstration samples

Finishing / post-processing options

- Painting
- Bead blasting
- Heat staked inserts
- Press-fit inserts

N

- strong, functional complex parts
- excellent chemical resistance to oils, greases, aliphatic
- ons, and alkalies
- olor and white parts like jigs, fixtures, labeling,
- ion models and functional prototypes

- Digital texturing
- Clear coat
- Vapor smoothing
- Laser surface decorating / etching

General process information

DESCRIPTION	SLA is a type of photopolymerization 3D print finishes and small feature resolution. During p by layer in UV-curable resin until the part is fu parts due to its longer print times. Our factory
BENEFITS OF SLA	 Intricate, accurate detailing Excellent surface finish Great for prototypes or one-off parts
BUILD VOLUME	 335 × 200 × 300 mm 13.2 × 7.9 × 11.8 in
MIN. FEATURE SIZE	The minimum feature size is different for eacl sive geometry.
LEAD TIME	Get your prototypes in as little as three days. case by case basis.

nting process capable of producing parts with excellent surface printing, a single laser traces the cross-section of a part layer ully formed. SLA is more suited to prototypes and low-run ry houses Formlabs Form 3B and Form 3L printers.

h resin, but we are able to achieve complex and aggres-

Production or high volume runs will be examined on a

Materials (continued on pages 31 and 32)

MATERIAL	COLOR	DESCRIPTION
Biomed Clear	Clear	 Biocompatible, Sterilizable and s Good material press
Clear	Clear	 Able to make cleater Not optically cleater transparency
Rigid 4000	White	Strong, stiff, andSoft matte white
Tough 2000	Gray	 Strong and sturd Good for prototy Resistant to bend

solvent safe roperties
ear parts with intricate features. ar but perfect to let light pass through and achieve some
resistant to bending e finish

ly vpes

ding

Materials (continued)

MATERIAL	COLOR	DESCRIPTION
Flexible 80A Clear	Black	 Dampening prop Good for cushior Stronger mechar
High Temp	Translucent Orange	 Detailed precise Able to withstand
Durable	Translucent, Clear	 Pliable, impact re Ideal for high wes

Finishing / post-processing options

• Painting

• Sanding

• Digital texturing

• Bead blasting

Press-fit inserts

Other Formlabs materials available upon request.

perties ning and soft touch areas nical properties than Elastic

e prototypes nd temperatures up to 238 °C

esistant, lubricious ear areas or rigid parts that need to be pliable

DIRECT METAL LASER SINTERING (DMLS) SELECTIVE LASER MELTING (SLM)

DIRECT METAL LASER SINTERING (DMLS) / SELECTIVE LASER MELTING (SLM)

General process information

DESCRIPTION	DMLS/SLM is a high powered laser with powe quality part production. Produce parts with co industries or functions. Your part will be feasi continued manufacturing applications.
RENEFITS OF DMI S/SI M	 Fast and reliable Design freedom
	DfAM support
MAX FEATURE SIZE	• 15 x 13 x 18 inches (381 x 330 x 457 mm)
MIN. FEATURE SIZE	0.004 inches (0.1 mm)
LAYER THICKNESS	0.003 – 0.006 inches (0.08 – 0.15 mm)
LEAD TIME	Get your prototypes in as little as three days. case by case basis.
MATERIALS	Multi-Material capabilities, Aluminum Alloy, N

der based printing technology for consistent, reproducible complex geometries including living hinges for a variety of sible and functional for all downstream applications or

Production or high volume runs will be examined on a

Nickel Alloy, Maraging Steel, Stainless Steel, PA, Glass-Filled Nylon