Design Archives - SyBridge Technologies https://sybridge.com/topics/design/ Bridging the gap between innovation and mass production Thu, 07 Dec 2023 21:27:17 +0000 en-US hourly 1 https://wordpress.org/?v=6.3.2 https://sybridge.com/wp-content/uploads/2023/01/SBTArtboard-1FR-Blue-Ico-80x80.png Design Archives - SyBridge Technologies https://sybridge.com/topics/design/ 32 32 HP Multi Jet Fusion Design Guidelines https://sybridge.com/hp-multi-jet-fusion-design-guidelines/ Thu, 30 Nov 2023 17:15:21 +0000 https://sybridge.com/?p=2492 Originally published on fastradius.com on October 20, 2021 Multi Jet Fusion enables the efficient production of end-use nylon parts using additive technologies. Here’s a checklist for design teams. Introduction What …

The post HP Multi Jet Fusion Design Guidelines appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on October 20, 2021

Multi Jet Fusion enables the efficient production of end-use nylon parts using additive technologies. Here’s a checklist for design teams.

Introduction

What is Multi Jet Fusion?

Multi Jet Fusion (MJF) is an industrial form of 3D printing that can be used to produce functional nylon prototypes to higher volume production parts with exceptional design freedom and mechanical properties. The MJF process works by using inkjet nozzles to selectively distribute fusing and detailing agents across a bed layered with nylon powder. Unlike selective laser sintering, which uses lasers to fuse the powder into solid material, the MJF printer uses a continuous sweeping motion to distribute agents and apply heat across the print bed layer by layer until the part is finished, MJF can produce high-quality parts at high speeds.

This manufacturing process also does not require support structures to produce parts, making it possible to create complex geometries like internal channels or co-printed assemblies. MJF parts have mechanical properties comparable to injection-molded ones, but without the need for expensive tooling.

Designing for manufacturability will go a long way in ensuring optimal part quality and yield, minimizing post-processing needs, and driving cost reductions. Here’s a quick checklist to help your team ensure that you’re following MJF design best practices.

1. Is MJF a suitable process for my project?

Before diving into design changes, it is important to ensure that the MJF process will meet all product requirements. Here are a few questions to ask yourself:

Do any of the material offerings meet my product requirements?

While MJF has many strengths, it has a limited list of approved materials. PA12 and its glass bead counterpart are fairly versatile for rigid plastic applications. TPU, a flexible polyamide, can find use where an elastomeric material is required. If the available materials do not meet a specific requirement, you may need to consider a different process.

Does my part fit in the build volume?

One key limiting factor is the machine’s build volume, which is 380 x 380 x 284mm for the Jet Fusion 4200. In some cases, large parts can be printed as smaller subcomponents and assembled using adhesive or mechanical joints. In this case, design features such as dovetail joints may facilitate alignment and adhesion.

Do I have any tight tolerances I need to hit?

While the gap between additive and injection molding tolerances is narrowing, it is important to make sure that MJF’s tolerances are sufficient within the context of your assembly.

Example of dovetail joint used to adhere subcomponents

2. Are there areas where I can use less material?

In most cases, MJF defects are caused by thermal gradients that develop during the build. If the material cools unevenly, the piece may warp or develop sinks. Parts that are long and thin, have abrupt changes in cross-sections, or have thin curved surfaces are especially prone to shrink-induced warp.

Sample DFM changes for a part that would warp due to an abrupt cross-section change; (a) latticed (b) shelled (c) chamfered / gradual transition

Removing material from part designs wherever possible through the use of pockets, shelling, lattices, and topology optimization is key to mitigating and preventing these defects. Avoiding large changes in cross-sections is another way to limit warp. Ensure that chamfers and fillets are incorporated where needed throughout the part design to make the transitions between different features more gradual.

3. Are my features above the minimum threshold size?

In general, the wall thickness of MJF-printed parts should be a minimum of 1.5mm. Small design features should also be no smaller than 1.5mm, though some features such as slits, embossing, engraving, or the diameters of holes and shafts can be as small as 0.5mm. For embossed or debossed text, the font should be no smaller than 6pt (approximately 2mm) and should be a minimum of 0.3mm deep.

If a part includes screw threads, they should be M6 or larger. Where smaller, more precise, or more durable threads are needed, consider using threaded inserts. Beyond feature resolution, you should also consider how small, slender features might break off in post-processing.

Printed screw threads should be M6 or larger; inserts may be used where smaller or more robust threads are needed.

4. Have I taken assembly tolerances into account?

Even with the greater geometric flexibility provided by the MJF process, some applications may still require a part to be assembled from multiple components. In general, mating faces should have 0.4 – 0.6mm of clearance to ensure that the components can properly fit.

Cross-section views of co-printed (a) screw and (b) ballfoot. These designs will require more
clearance to prevent fusing due to higher contact surface-area

If your project involves co-printing assemblies, the components printed together should have at least 0.5mm of clearance, but may require more, particularly when there are thick cross sections or there is a significant contact surface area.

5. Is my part design optimized for post-processing?

If your part requires post-processing, there are a few things to double-check in your design to help make secondary operations more effective.

  1. Ensure that there are no unvented or trapped volumes in the design.
  2. Avoid blind holes whenever possible — these are hard to clean, which can quickly drive up costs.
  3. Add fillets to corners where the powder can cake and become difficult to remove through standard tumbling and bead blasting.
The flow path of this geometry will make it very difficult to get powder out of the bottom section.
It is easy for powder to cake in sharp internal corners. Adding fillets will significantly help depowdering.
Blind holes are difficult to depowder, as there is nowhere for the powder to exit when blasted from the hole entrance. Consider making it through hole or adding escape channels.

6. Have I seized every opportunity to lower part costs?

Besides improving part quality, intelligent DFM changes can drive cost savings. Lightweighting your part, for example, reduces the risk of defects and lowers the material cost per part. The other main consideration when designing for MJF and cost is optimizing nestability in a build. Adding draft or altering the position of printed assemblies may increase the number of parts that can fit per build and distribute fixed costs over more parts, lowering the overall part cost.

Designing for nestability will increase how many parts can fit in a build, decreasing per part cost.
In this example, adding draft enables packing of two additional parts.

In addition to optimizing designs for manufacturability, additional factors to consider include your part’s cosmetics, surface finish, and ease of storage and transportation. MJF parts are naturally grey, but can be dyed black easily. If painting, priming, or other processes are not essential to the part’s function, they can be foregone to reduce expenses. Most MJF-printed parts will have a 125-250 microinches RA finish — if a smoother surface is needed, the part can undergo a variety of surface treatments, including sanding, tumbling, or vapor smoothing. Texturing can be an effective design technique to improve part aesthetics without additional post-processing.

Getting Started With a DFM Expert

Adhering to DFM principles is key to the success of manufacturing processes for a number of reasons. It helps to keep your operating expenses as low as possible, allows you to detect and address design issues early, and improves your overall part quality. This checklist is a valuable resource for making sure your MJF parts are optimized and refined before production begins.

The added advantage of partnering with SyBridge is that your team gains access to the latest in digital design technologies and expert advice. Our team is standing by to help guide each project from design and prototyping through to fulfillment, ensuring that you receive superior-quality parts on time and at the right price. Contact us today to get started.

The post HP Multi Jet Fusion Design Guidelines appeared first on SyBridge Technologies.

]]>
The Digital Thread: End-to-End Data-Driven Manufacturing https://sybridge.com/digital-thread-enhancing-manufacturing-intelligence/ Fri, 17 Nov 2023 01:40:10 +0000 https://sybridge.com/?p=3788 by Charlie Wood, Ph.D.VP of Innovation, Research & Development As a part of the SyBridge team, I’ve witnessed the remarkable evolution of design and engineering tools over the past decade. …

The post The Digital Thread: End-to-End Data-Driven Manufacturing appeared first on SyBridge Technologies.

]]>
#genesis-content > article > div > div.entry-content.entry-content-single > div > div > p > a { color: #069ed6 !important; }

by Charlie Wood, Ph.D.
VP of Innovation, Research & Development

As a part of the SyBridge team, I’ve witnessed the remarkable evolution of design and engineering tools over the past decade. These digital advancements have revolutionized our approach to manufacturing, allowing for more data-driven processes and insights. But it can be difficult to know where to start, or even to understand where there are opportunities to implement.

At the heart of our approach lies the concept of the “Digital Thread,” a framework that interconnects data across the entire lifecycle. This concept enables us to leverage the wealth of design and operational data across our data lake that is generated in the manufacturing process, from CAD designs to inspection results. While the industry is still moving towards seamless integration, we’ve made significant strides in creating workflows that prioritize data-driven decision-making.

Streamlining Injection Mold Design Workflows


One key area where data is contributing to efficiencies within manufacturing is that of injection mold tooling design. By utilizing virtual component libraries for mold designs, we’ve been able to streamline the complex process of coordinating and collaborating on intricate assemblies for mold making. In these libraries, we have standard blocks, system approaches and components stored in a way that allows us to quickly identify and digitally pull components. This approach offers lots of flexibility when it comes to customer requests and needs, all while keeping standard practices built right into our tools. Over the course of many years, we’ve built software-driven processes to design new builds based off of these standard components, allowing us to quickly handle new requests from customers and build a learning feedback loop to avoid costly mistakes.

Additionally, through the use of parametric component libraries, we’ve been able to significantly reduce design complexity and incorporate our own manufacturing intelligence into these components, allowing us to directly check for design issues and integrate manufacturing information into CAD files. This process creates a flow of information from the conceptual stage of the design through manufacturing and approval, extending our Digital Thread from end to end. This information flow can also go backwards, tying quoting, estimation assumptions and specifications directly to tool designs. These advancements in our design approach have not only made the job of a tool designer a bit easier, but have improved quality by creating
more explicit feedback loops in our design processes.

Innovations in Conformal Cooling

As many know, 3D printing has unlocked incredible design freedom for manufacturing engineers around the world. However, what can be overlooked is how impactful it has been for system designers, like toolmakers, who can utilize that design freedom and low cost of complexity to create components that radically improve performance. In the case of toolmaking, 3D printing has unlocked new cooling channel designs simply not possible before.

Conformal cooling

Although increasing numbers of toolmakers are using these advanced manufacturing techniques today, the new design space is so complex it can be hard to probe. In the past, conformal cooling channels were fairly straight, in-plane paths driven by tool access limitations in machining. With metal 3D printing, the limits are far less restrictive and allow designers to pursue more creative and complicated structures.

Using advanced data-driven methods with virtual design and testing capabilities, we’ve been able to uncover non-obvious opportunity areas in the design space. Through these novel design and
manufacturing workflows, we’re optimizing cooling performance and achieving remarkable improvements in tool performance as measured through cycle time. Through our approach, we’re seeing cycle time reductions as high as 50%. These successes have inspired us to further integrate and enhance these workflows, driving continued innovation.

AI Tools for Manufacturing

DFM Checks

The Fast Radius Portal’s AI-powered DFM checks

Looking ahead, we’re enthusiastic about the possibilities that emerging technologies like machine learning (ML) and artificial intelligence (AI) offer. These novel data modeling approaches have shown incredible potential, and the pace of technological advancement is rapidly accelerating. We’ve been able to use ML models to build data models faster than through simple bottom-up logic, particularly for complex problems that contain many correlating factors.

The critical ingredient in implementing AI for manufacturing are large data sets that provide a source of truth for model training and validation. By leveraging our existing datasets, we aim to predict defects, optimize designs in real-time and ultimately revolutionize quality control processes. These technologies are not a distant vision; they’re an integral part of our current digital platform, with features like instant quoting and DFM checks based on captured manufacturing data. And this is just the beginning of what’s possible.

Unlocking Manufacturing Innovation via the Digital Thread

Our journey in harnessing digital workflows for injection molding design has seen remarkable progress and tangible results. The end-to-end integration of data into the Digital Thread, combined with the power of ML and AI, holds the key to unlocking even greater innovation. As we continue to push boundaries and explore new frontiers, we’re excited about the advancements at the interface between the physical and digital worlds.

Are you ready to harness the power of the Digital Thread for your organization? Contact us today to get started.

The post The Digital Thread: End-to-End Data-Driven Manufacturing appeared first on SyBridge Technologies.

]]>
Automated Design for Manufacturability (DFM) Checks, Powered by Fast Radius https://sybridge.com/automated-design-checks/ Tue, 18 Jul 2023 18:28:26 +0000 https://sybridge.com/?p=3126 With the Fast Radius Portal, you get instant design for manufacturability (DFM) feedback on your part designs across a range of technologies, including 3D printing (DLS, MJF, FDM, SLA), CNC …

The post Automated Design for Manufacturability (DFM) Checks, Powered by Fast Radius appeared first on SyBridge Technologies.

]]>
With the Fast Radius Portal, you get instant design for manufacturability (DFM) feedback on your part designs across a range of technologies, including 3D printing (DLS, MJF, FDM, SLA), CNC machining and injection molding.

Our software automatically checks your part files for issues that will make them difficult to manufacture. 

Additionally, the Fast Radius Portal also tracks parts from design to manufacturing to fulfillment, so you can see how different design elements contribute to a part’s success or failure. We feed that information back into the system to continually improve our models, resulting in automated design checks that get smarter every time you use them.

A Data-Driven Approach to Design

When you upload your design, it’s automatically checked for a variety of issues that can impact manufacturability, function and overall quality. These checks help you identify potential problems early and ensure clear communication about what you can expect from your manufactured parts. 

A red X indicator means there’s a critical manufacturability issue that you should address before manufacturing your parts. Though you can still proceed to manufacture parts with such issues, they may not turn out as you intended or could have defects.

An orange exclamation point indicator means that there are elements in your design that might cause issues. Our team sees these checks too, so they’ll let you know if they anticipate any major issues.

If you’re not sure how to fix an issue, you can submit your part for a manual quote so our team can take a look.

Take a look at the chart below for a brief overview of the DFM checks we perform and how any issues may impact your final parts.

DFM Check Reference Guide
DFM Check PerformedManufacturing ProcessManufacturability Warnings

⚠️
Warning/Notice

🛑
Critical Issue
Description
DLSMJFFDMSLACNCIM
Supported Surfaces*⚠️Part design has surfaces that need to be supported. Reducing overhangs that require support is recommended to avoid aesthetic imperfections.
Watertightness🛑Part design may not be watertight. Mesh issues such as unintended holes or missing sections may exist.
Minimum Process Resolution⚠️Part design has areas that register as having zero thickness. Revising your file’s mesh may correct these issues.
Inadequate Venting⚠️Part design inhibits access for removal of supports or excess material from certain areas. Filling in voids, increasing hole diameters or improving access to cavities is recommended.
Trapped Material🛑Part design has fully enclosed cavities where material may become trapped. Adding vent holes to allow material to exit these regions may be necessary.
Regions Needing Venting⚠️Part design has partially enclosed volumes that may become fully enclosed. Adding vent holes in these areas is recommended.
Partially Vented Regions⚠️Part design has partially enclosed volumes that may not vent properly. Adding larger vent holes or relocating vent holes is recommended.
Thick Walls⚠️🛑Part design has thick walls whose thickness may need to be reduced to avoid issues during manufacturing.
Thin Walls⚠️🛑Part design has thin walls whose thickness may need to be increased to avoid issues during manufacturing.
Feature Size⚠️🛑Part design has small features that may not form correctly. Increasing the size of these features is recommended.
Surface Imperfections*⚠️Part design has shallow or low angles perpendicular to the build direction that may result in visual imperfections. Adjusting the angle of these surfaces is recommended.
Sharp Edges or Corners (Concave)⚠️Part design has sharp internal corners that may require adding standard fillets to avoid use of specialized tooling.
Sharp Edges or Corners (Convex)⚠️Part design has sharp edges or corners. Adding fillets to these areas is recommended.
Standard Hole Sizes*⚠️Part design contains non-standard hole sizes. Using standard metric or imperial sizes is recommended to reduce costs.
Draft Angle*⚠️Part design has no draft (taper) on its surfaces. Adding at least 0.5 degrees of draft is recommended.
Part Aspect Ratio🛑Part design has a high aspect ratio, making it susceptible to warpage. Creating a more regular geometry by increasing the smallest overall dimension or reducing the largest overall dimension may be necessary.
Multiple Body Detection🛑Part file contains multiple solid bodies. Part designs must be uploaded individually to assess manufacturability.
Deep Pockets or Slots⚠️Part design contains deep pockets or slots. Changing the overall depth or the minimum internal radii of these features is recommended.
Part Unit Selection⚠️The selected unit of measurement resulted in a part that’s too large or small to be produced. Check that the selected unit is correct.
Part Size🛑Part design is too large for the selected manufacturing process. Selecting a different process may resolve this. Alternatively, dividing the part into multiple pieces may be necessary.
Sharp Edges or Corners (Knife Edges)⚠️Part design has sharp edges or corners. Rounding edges or corners with standard fillets is recommended.
Surface Contouring*⚠️Part design has a high percentage (>50%) of surfaces that require contouring. Replacing curved and/or organic surfaces with flat ones is recommended.
Low Material Utilization*⚠️Part design requires a high percentage (>35%) of material to be removed relative to the stock size. Reducing the part size to fit a smaller stock or adjusting the geometry so less material is removed is recommended.

* Included with Fast Radius Pro subscription

Get Design Feedback in an Instant

To get started, simply upload your design file and choose your manufacturing process and material.

Checks are listed on the right side of the screen. Each check expands to show a more detailed description of the issue. Clicking on a check will highlight that specific issue on your part visualization. If you need help understanding any of the checks, you can contact our team of experts right from within the Fast Radius Portal.

Once your part passes the necessary checks, you can place your order and checkout. Alternatively, you can also submit your design for a manual quote to start a conversation with our experts.

Upload Your Parts Today

Our automated DFM checks are just one of the powerful tools within the Fast Radius Portal. When you upload your part files, you also gain access to features such as advanced costing analysis, real-time order tracking, and a comparison tool that makes decision-making easy. Simply upload your CAD file to experience what modern manufacturing from SyBridge can help you achieve and discover how our industry-leading technologies can help you make new things possible.

The post Automated Design for Manufacturability (DFM) Checks, Powered by Fast Radius appeared first on SyBridge Technologies.

]]>
Design Tips for Low-Volume CNC Machining Production Runs https://sybridge.com/design-tips-low-volume-production-runs/ Wed, 19 Oct 2022 23:58:00 +0000 https://sybridge.com/?p=3691 Originally published on fastradius.com on October 19, 2022 In the manufacturing business, more money put into production generally means less profit or higher prices for customers. But careful planning and …

The post Design Tips for Low-Volume CNC Machining Production Runs appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on October 19, 2022

In the manufacturing business, more money put into production generally means less profit or higher prices for customers. But careful planning and informed decision making about your design will help save time and money during the CNC machining process.

CNC machining costs can be divided into two main buckets: non-recurring costs and piece costs. Non-recurring costs refer to all of the upfront costs required to get any production run (large or small) off the ground; these costs are amortized over the production quantity. Piece costs are expenses associated with each individual part, and scale with quantity. The bottom line cost to manufacture a single part, taking into account all cost buckets, is often referred to as the fully burdened part cost.

To put this in mathematical terms: 

Fully Burdened Part Cost = Non Recurring Costs / Quantity + Piece Costs

Non recurring costs include:

  • Part design 
  • Planning (manufacturing process, inspection, etc.)
  • CAM programming
  • CMM programming 
  • Workholding, fixtures, gauges, and tooling identification and sourcing

Piece costs include:

  • Machine time
  • Labor time (loading and unloading parts)
  • Consumable tooling
  • Raw material
  • Cleaning, deburring, and finishing 
  • Manual inspection

Following the equation above, in lower volume runs, non-recurring costs are amortized over fewer parts, which means the expense is higher per part. For example, if the non-recurring costs for a job are $5,000, and the production quantity is 100 parts, then each part will have a burden of $50 for non-recurring expenses. On the other hand, if that same job is ordered for a quantity of 200 parts, this would result in a non-recurring burden of just $25 per part, a potentially significant cost delta. The good news is that you can minimize CNC machining costs for shorter production runs by optimizing your part designs.

Design tips for short production runs

To maximize your time and budget, try these design tips for short production runs:

Use standardized, simple designs

Keep your design as simple and standardized as possible. Overly complicated part designs can require multiple manual rotations and repositions, more expensive CNC systems, or specialized tools. With this in mind, it may be worthwhile to break up a complex piece into simpler components that can be assembled later.

You’ll also want to:

  • Design standard-sized holes: The deeper the hole, the more complex the metal chip evacuation process, and the more expensive your part. Try to make each hole’s depth no more than five to six times the drill’s diameter to ensure your machinist can quickly evacuate the metal chips. Also, make sure to use standard drill sizes when designing your holes or you may end up needing to purchase a custom tool, which can drive up costs and overall production time further.
  • Use standard threads: As with drill sizes, using standard thread depths and diameters can save time and money. In practice, this means simply using an existing thread class instead of creating a custom thread via CNC machining or 3D printing. Try to use the H2 thread tolerance, since H3 is tighter and more expensive to create. Also, it’s best to keep your thread depth no deeper than required by your part’s functional and structural specifications.
  • Design with standard stock sizes in mind: You can also cut costs and machine times by designing your parts to align with standard stock sizes. Instead of ordering a larger piece of material only to have to machine it down, your machinist will be able to buy a standard stock piece and then make few (if any) changes before starting on your part. Beyond choosing standard stock sizes, it’s also a good idea to allow a large enough tolerance so that the outside of the part does not need to be machined.
  • Use loose tolerances: Tight tolerances can require specialized manufacturing processes or secondary operations, and can increase set-up, machining, and inspection time and cost. With that in mind, your part’s tolerances should only be as tight as required by functional and structural constraints.

Avoid thin walls, tall walls, and narrow pockets

CNC machining can be a delicate and time-intensive operation, especially if you have thin walls, tall walls, or narrow pockets.

Since they can increase the risk of cutter deflection, deformation, compromised surface finishes, and part failure, and make it difficult to meet specified tolerances, thin walls are generally less stable and more expensive to machine. Beyond those considerations, your machinist may need to take numerous passes over a part to create a thin wall without accidentally fracturing or snapping it with excessive vibrations, which will, of course, further drive up machining times and costs.

There are options for addressing the increased machining times, higher production costs, and fracture risks associated with thin walls. For example, if you have a metal part, try to design walls that are at least 0.8 mm thick. For plastic parts, try to aim for walls at least 1.5 mm thick. Similarly, you’ll want to avoid including tall walls, deep cavities, and narrow pockets in your part, since these features require longer cutting tools and the removal of more waste material. Like the problems associated with thin walls, these issues can lead to increased cutting tool deflection, chatter, inaccuracies, reduced tool life, and sub-par surface finishes, all of which drive up the final part cost.

Avoid unnecessary text or finishing processes

Adding text to your part will enable you to clearly number components, include a description, or apply a company logo. While machined text looks aesthetically pleasing, and can be functionally useful, it’s an expensive and time-consuming process since you’ll need to trace each character with a small ball end mill or engraving tool. Unfortunately, including raised text on a part is even slower and costlier since even more material will need to be milled away from the part to achieve the effect.

As an alternative to machining, if your part requires text, lettering, or a logo, you may be able to save time and money with a post-production surface finishing method. For example, silk screening, laser marking, rubber ink stamping, and painting will all enable you to add text to your parts faster than direct engraving. Of course, given that adding any CNC finishing process will increase your parts’ turnaround time and overall costs, it’s best to avoid text and other non-critical finishing processes whenever possible.

Choose the proper material

Material selection is important in both long and short production runs since using the wrong metal or plastic for your parts can drastically increase project costs. Some materials are more difficult to machine than others, which means longer turnaround times and higher machining costs. Even if two materials are equally machinable, the chances are that one will be more expensive than the other.

For example, while titanium is ideal for aerospace applications, it’s expensive and difficult to machine. On the other hand, softer, less costly metals, such as aluminum, are easier to machine and strong enough for everything from airplane parts to architectural components. Similarly, if you want to create a plastic part but don’t require the strength or high heat resistance of polyetheretherketone (PEEK), you can save money by using acrylonitrile butadiene styrene (ABS) or another high-performance engineering thermoplastic.

To put it simply, if you don’t really need the properties of an expensive and/or rare material, you should use a less expensive and/or more common material. As an added benefit, using a more readily available material also likely means a reduction in your parts’ overall lead time. It’s worth applying this mentality during the prototyping phase, too; for example, if you only need to create a proof-of-concept model, you should use the least expensive plastic that will still demonstrate the feasibility of your idea.

Additive manufacturing as an alternative for short production runs

While designing with CNC machining lead times in mind can help reduce turnaround and cut costs, depending on your material requirements and the size of your run, additive manufacturing might represent a better option

In contrast to CNC machining, which is a subtractive process that involves cutting away material to shape a final product, the additive manufacturing process builds parts layer by layer. Additive manufacturing is typically far less labor-intensive than CNC machining, sometimes only requiring limited mid-production repositioning and limited post-processing to enhance a part’s functionality, or to achieve a desired finish. Like CNC machining, additive manufacturing can be used to make metal parts, but plastic additive manufacturing is far more common. In fact, many of the plastics used in additive manufacturing are mechanically equivalent to those used in injection molding. 

Generally, additive manufacturing is a better choice for extremely low-volume production runs or for projects in which finished parts or prototypes must be delivered fast, and where tolerance requirements are not tight. By contrast, CNC machining is more appropriate for low-volume production runs with part quantities in the higher double digits or low hundreds, or in projects that have high tolerance requirements.

Working with an experienced manufacturing partner

Each of our design tips for short production runs can help you ensure that your production process is as smooth, cost-efficient, and fast as possible. However, there’s a lot to keep track of when optimizing parts for low-volume production, so working with a trusted manufacturing partner is also a valuable opportunity to take some of the weight off your shoulders.

From design through fulfillment, when you work with SyBridge, our team of experienced engineers will provide you with the support you need to make your project possible. Our cloud-based tools are designed to help you pinpoint design flaws, determine optimal order quantities, and find the right material for your part’s specific application. Simply create an account and upload your part files. We can generate instant quotes for both additive manufacturing and CNC machining projects, which means you can get started making your new parts and products today. Contact us today.

The post Design Tips for Low-Volume CNC Machining Production Runs appeared first on SyBridge Technologies.

]]>
3 Design Strategies for More Sustainable Parts https://sybridge.com/design-strategies-for-more-sustainable-parts/ Thu, 21 Apr 2022 23:53:00 +0000 https://sybridge.com/?p=3689 Originally published on fastradius.com on April 21, 2022 Sustainability is becoming increasingly important for businesses and consumers alike. Not only can businesses capitalize on opportunities for tax credits and more …

The post 3 Design Strategies for More Sustainable Parts appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on April 21, 2022

Sustainability is becoming increasingly important for businesses and consumers alike. Not only can businesses capitalize on opportunities for tax credits and more stable energy prices, but in the long run, companies that commit to sustainability will see greater success with consumers as individuals seek environmentally friendly product offerings.

From the energy and material used in production to the carbon emissions from transportation, there are opportunities across the manufacturing process for businesses to improve their environmental impact. One simple place to start is with product design. Simple changes — like lightweighting parts — can reduce material use, emissions, and more.

Use the infographic below for ideas on how to incorporate more sustainable practices into your design process.

Contact us today to get started.

The post 3 Design Strategies for More Sustainable Parts appeared first on SyBridge Technologies.

]]>
Additive Support Structures: Why They Matter and How to Design for Them https://sybridge.com/support-structures-why-they-matter-and-how-to-design-for-them/ Tue, 05 Apr 2022 18:02:00 +0000 https://sybridge.com/?p=1532 Previously published on fastradius.com on April 5, 2022 Additive manufacturing has ushered in a new era of manufacturing possibilities. 3D printing technology enables us to create previously ‘unmakeable’ parts, featuring …

The post Additive Support Structures: Why They Matter and How to Design for Them appeared first on SyBridge Technologies.

]]>
Previously published on fastradius.com on April 5, 2022

Additive manufacturing has ushered in a new era of manufacturing possibilities. 3D printing technology enables us to create previously ‘unmakeable’ parts, featuring complex dimensions and angles, with unprecedented speed and precision. However, the nature of the additive manufacturing process, in which material is added layer by layer, often means that parts require support to manage internal pressure–essentially, the force of gravity–during the print. Without that support, additive layers can’t be held up by the material around them and collapse, causing the print to fail. To address this challenge, we must sometimes design support structures into our 3D printed parts.

To ensure you maximize the potential of your 3D printed part for speed, quality, and cost, it’s important to understand support structures and how they should be integrated into your additive manufacturing project.

What are Support Structures in 3D Printing?

Support structures hold up elements of a 3D printed part which have no supporting material during manufacture. Not all 3D printing processes require support structures: while the Stratasys Fused Deposition Modeling (FDM), Carbon Digital Light Synthesis™ (DLS), and Stereolithography (SLA) processes often require supports, HP Multi Jet Fusion, which is a powder bed printing process, does not.

In the Stratasys Fused Deposition Modeling (FDM) additive manufacturing process, for example, layers of heated extruded material are built up from a print bed by adhesion to the material layers below them and may overhang those lower layers in order to create an angled surface. When that angle exceeds 45° the overhanging element generally requires support or the weight of the unsupported material will cause the element to collapse and the print to fail.

Left: If the overhang is 45° or less taken from the vertical, support are generally not needed
Right: If the overhang is greater than 45° taken from the vertical, supports are generally needed

Where supports are required, they must be integrated into the part design and printed into the part when it is produced. Of course, this means accounting for the extra time and material that will be required during the 3D printing process and the subsequent post-process removal of the support structures.

Exceptions: Not all additive manufacturing methods require support structures. While 3D printing technologies such as fused deposition modeling (FDM) print parts by adding layers of material to a print bed, others, such as HP Multi Jet Fusion (MJF) print parts from a powder bed. Since the layers of powder are self-supporting, HP MJF part designs do not need to incorporate support structures.

What Types of Support Structures are Available?

Support structures for 3D printed parts vary in design and type but can be broadly organized into two categories: ‘trees’ and ‘fences’.

  • Tree supports: Resembling branches or trunks, tree supports may enclose a part and fit neatly to angled surfaces for ease of removal. Tree supports can be designed, applied and tested quickly as part of a 3D printing project, enabling rapid iteration. Their branch-like structure means they can reach out over distances to support specific areas.
  • Fence supports: Resembling walls, and with a variety of mounting points, fence supports are printed perpendicular to a part’s surface often with a lattice structure. Fence supports are more durable and easier to remove than tree supports, and are typically a better choice for cosmetic pieces or high volume production.

When Should I Use Additive Manufacturing Support Structures?

The ‘45° rule’ suggests that 3D printed overhangs of 45° and greater will require support, while those under 45° will not.

However The 45° rule should be considered a general rule of thumb and the need for support structures will vary depending on the complexity of part design and on the material being used. In some cases, bridging may offer an alternative to support structures: bridging is a technique in which heated additive material is stretched across a short distance (usually less than 5mm) without compromising the integrity of the part.

The ‘YHT’ principle: When conceived as 3D printed models, standing upright, the letters Y, H, and T are useful for illustrating the necessity for additive manufacturing support structures.

  • The letter Y: Two arms extend from the letter Y at 45° – the angle of their overhang does not necessitate support structures. The further the overhang angle exceeds 45°, the more likely it is that support structures will be needed.
  • The letter H: If the two vertical elements of the letter H are within 5 mm of each other, it may be possible to 3D print the horizontal element of the H with a bridge. If the vertical elements are further than 5mm apart, the horizontal element may require support structures.
  • The letter T: The two arms of the letter T extend from the vertical element at 90° and will require support structures.

Beyond the angle of an overhang, other factors may affect the need for support structures. These include the quality of the 3D printer and the speed at which it prints: slower printers, for example, may increase the need for support structures.

Support Structures: Manufacturing Challenges

Support structures are a necessity in many additive builds but it’s important to remember that they can significantly affect the cost of a part in volume production — not to mention the amount of waste material that the project ultimately produces. Care should also be taken when removing support structures since they may damage or mark the finished part as they are detached.

With those factors in mind, 3D printed parts should ideally be designed to minimize or eliminate the need for support structures and, where possible, design for additive manufacturing (DFAM) principles should be applied in order to optimize parts for quality, cost, and production time. The following strategies may help to reduce the need for support structures:

Orientation: The orientation of parts on the print bed may affect the need for support structures. Overhangs, for example, may be eliminated by rotating a part onto its back or side. In the examples above, laying each of the 3D model letters Y, H, and T on their backs would completely eliminate any overhanging elements along with the need for support structures or bridges.

Part geometry: Where possible, remove overhangs from your design – or reduce their angle to less than 45°. Obviously, functional requirements may make the total elimination of overhangs impossible but you may be able to introduce alternative design elements such as chamfers, gussets, and radii to make the part’s geometry more self supporting.

Part separation: 3D printing technology enables the production of complex single parts, but if the amount of support those parts needs reduces their quality or cost-effectiveness it may be worth splitting the part into smaller components which can be assembled later. Spherical parts, for example, require substantial support but by splitting them in half, and creating a large flat surface, it’s possible to eliminate the need for supports completely.

Support density: The pressures exerted on support structures will dictate how strong they need to be and how much material is required to print them. To ensure a successful and cost-effective print, ensure your support structures are dense enough to support the size of the overhanging element. Bear in mind that the denser the support structure, the more difficult it may be to remove post-print.

Dissolvable supports: Some 3D printing technology may be able to print support structures in a separate dissolvable material, via a secondary print nozzle. These support structures can be submerged in water or chemicals, post-print, and dissolved to leave an intact part. Dissolvable supports reduce the potential for damage to the finished part during the support structure removal process. Most FDM additive materials have dissolvable supports, DLS and SLA materials do not. The HP MJF process does not require supports at all.

Getting Started

Support structures will continue to play an integral role in most additive manufacturing projects.

While the goal is always to reduce or eliminate the need for support structures, our engineers aim to optimize your part for functionality and cost. If you’d like to know more about how we can make your additive manufacturing project possible, contact the SyBridge team today.

The post Additive Support Structures: Why They Matter and How to Design for Them appeared first on SyBridge Technologies.

]]>
Everything You Need to Know About STEP Files https://sybridge.com/everything-you-need-to-know-about-step-files/ Mon, 21 Feb 2022 20:33:00 +0000 https://sybridge.com/?p=3322 Originally published on fastradius.com on February 21, 2022 Whether you’re manufacturing parts for motorcycles or rebar-tying robots, you’ll need to start with a computer-aided design (CAD) file. These digital files contain 3D designs …

The post Everything You Need to Know About STEP Files appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on February 21, 2022

Whether you’re manufacturing parts for motorcycles or rebar-tying robots, you’ll need to start with a computer-aided design (CAD) file. These digital files contain 3D designs and other material, texture, and tolerance data to help product teams accurately plan, visualize, and manufacture the final product.

You have plenty of options when it’s time to export your CAD model, but different file formats are best-suited for different use-cases. Let’s take a look at STEP files, how they’re used, and their advantages and disadvantages so you can determine whether or not the STEP file format is the best fit for your project.

What is a STEP File?

Since other formats may require you to take intermediate conversion steps, STEP files (.step) were created to simplify saving and sharing three-dimensional models across CAD systems. STEP files go by many names including ISO 10303, STP, and P21, but STEP is actually an abbreviation for Standard for the Exchange of Product Data. The STEP file image format was developed in the mid-1980s by the International Organization for Standardization’s (ISO) TC 184, and the first edition of STEP came into use in 1994.

Every 3D STEP file contains three-dimensional model data stored in the widely recognized ASCII text code format. While some other file formats only represent basic geometries, STEP files will read and save a 3D model’s entire body with a high level of precision, allowing for more accurate file sharing and opening. Plus, since STEP files are plain text that appears as 3D models when opened in CAD programs, editing STEP files is simple. Likewise, it’s easy to view a STEP file’s creation date, original file name, application origin, and other metadata.

STEP files are commonly used in 3D modeling and architectural design due to their accuracy, cross-platform compatibility, and ability to create detailed models. Also, if you plan on CNC machining or injection molding a part, you’ll need to use STEP files because this file format enables machine tool path calculations.

The Pros and Cons of STEP Files

As one of the most popular neutral CAD formats, the STEP file format is compatible with countless programs. You can use STEP files with Autodesk Fusion 360, Dassault Systemes CATIA, FreeCAD, IMSI TurboCAD, SolidWorks, ArchiCAD, and more, making collaboration easy. Opening and editing files created in a newer software version in an older version — also known as downward compatibility — is also easy with STEP files, as they serve as intermediate links.

Another benefit of using a 3D STEP file format is that your file will store data using a non-uniform rational basis spline (NURBS). Using this mathematical representation of curves and basis splines (B-splines) results in greater flexibility, high dimensional accuracy, and smooth curves on the final product that would be impossible to achieve using triangle or polygon representations. That’s why many designers use STEP files for car bodies and other applications that require extreme precision and high levels of detail.

Since STEP files save the model as an entire body, you can customize and edit your models without losing any quality — even after exporting or re-uploading them. Plus, files in the STEP file format compress far more than source files, even though they’re around the same size. A compressed STEP file is typically 20% the size of a compressed source file, making STEP files better suited for sharing over the internet.

STEP files have a lot to offer, but they do have some drawbacks. For example, STEP files aren’t particularly storage efficient and will take up more space than other 3D model formats. They also don’t contain parametric intelligence; feature history; or camera, texture, material, and light data. Additionally, STEP files have an order set of procedural calls that reference other previously specified procedural calls, meaning it takes a lot of time and effort to create STEP files.

Unfortunately, you also can’t directly render STEP files with a graphics processing unit (GPU), and most renderers aren’t capable of loading STEP 3D files because of NURBS. Instead, you’ll need to convert your model into a series of small triangles for rendering using a software program.

STEP Files vs. STL Files — What’s the Difference?

STEP files and STL files are two of the most common file formats, but they each have their own characteristics. STL files only describe a model’s exterior geometry and simplify its features into a mesh made of triangles that’s free of gaps and overlaps, but STEP files save models as single entities and use NURBS, allowing for higher dimensional accuracy and smoother curves. As a result, STL files are lighter, simpler, and more storage-efficient than STEP files.

STEP files are better suited for when you need an extremely accurate model, have a curved part, or are injection molding or CNC machining parts. They are also easier than STL files to customize and edit after being exported, so if you’re planning to do lots of editing or collaborating, you may want to consider using STEP files. If you’re making a 3D-printed prototype, don’t need a high-fidelity product, don’t plan on making edits, or only have flat surfaces, you can use an STL file.

Luckily, you can convert a STEP file to STL by opening your file in the program you used to create it and exporting it as a different file type. At SyBridge, we convert STEP files to STL files whenever we need to 3D print a part.

Manufacturing With SyBridge

Many professionals in the manufacturing industry use the STEP file format because of its compatibility across programs and its ability to accurately represent curved surfaces. However, STEP files can be complex and aren’t necessarily the best option for every project. If you need help deciding which file format you should choose, work with a manufacturing partner like SyBridge.

Partnering with SyBridge gives you access to a team of qualified engineers who can answer questions and help you with every aspect of the manufacturing process, whether you need assistance with your design or advice on production. Contact us today to get started.

The post Everything You Need to Know About STEP Files appeared first on SyBridge Technologies.

]]>
Five Tips to Help You Design for Additive Manufacturing https://sybridge.com/five-tips-to-help-you-design-for-additive-manufacturing/ Tue, 15 Feb 2022 17:07:00 +0000 https://sybridge.com/?p=1526 Previously published on fastradius.com on February 15, 2022 As manufacturing technology evolves, so too must the manufacturing industry’s design for manufacturing (DFM) skillset. The additive manufacturing landscape in particular has …

The post Five Tips to Help You Design for Additive Manufacturing appeared first on SyBridge Technologies.

]]>
Previously published on fastradius.com on February 15, 2022

As manufacturing technology evolves, so too must the manufacturing industry’s design for manufacturing (DFM) skillset. The additive manufacturing landscape in particular has advanced dramatically over the past decade: 3D printing used to be considered a prototyping tool, or even a novelty, but now that the technology has reached industrial-grade capabilities, design for additive manufacturing (DFAM) has become a highly coveted capability amongst engineers and product developers.

Given the rapid pace of change, if you’ve spent years honing your DFM expertise for legacy manufacturing technologies, the prospect of having to learn new DFAM techniques may seem overwhelming. That challenge may be complicated further by different 3D printing technologies: the optimal DFAM techniques for fused deposition modeling (FDM), for example, may be different from stereolithography (SLA), Carbon Digital Light Synthesis™ (DLS), or HP Multi Jet Fusion (HP MJF) – and entail significant new cost, material, and design considerations.

Understanding 3D Printing Technology

It should go without saying that a design project should be developed with an understanding of the technology that will be used to create it. 3D printing is an additive manufacturing process which means material is added progressively, layer by layer, to form a finished part — as opposed to a subtractive manufacturing process, such as CNC machining, in which material is removed from a workpiece by a cutting tool.

However, despite its differences from traditional manufacturing methods, the integration of additive manufacturing with existing production frameworks doesn’t have to be difficult. With a little creative thinking and a willingness to shift your perception, pivoting designs for additive production won’t be as challenging as you might imagine.

If you’re ready to make the change, here are five 3D printing design tips to help you get started:

1. Prepare for New Challenges

Additive manufacturing has opened up a range of manufacturing possibilities, enabling the creation of previously ‘unmakeable’ parts with relative speed and efficiency. However, DFAM also brings new challenges that designers and engineers must account for as they take parts from their digital state to physical production. The build volume of 3D printers, for example, may restrict the size of certain parts, and require projects to be built using multiple prints. Meanwhile, specific printing technologies have their own challenges: FDM produces parts with visible layer lines which may not be represented in digital designs (and which may be smoothed post-production), and the HP MJF process requires parts to go through a cooling process, and then be cleaned, post-print which may extend production timelines.

DFAM is an undeniably exciting frontier but to get the most out of your 3D printing technology, it’s important to design around these practical considerations as you develop projects.

2. Adjust Supporting Structures

In order to account for elements with overhangs, parts may need supporting structures, which can generate design challenges. The need for supporting structures will depend on the angle at which an overhang is set and it is important to remember that the supports will consume 3D printing materials, adding extra cost and time to the print process.

Fortunately, you may be able to reduce the need to support overhangs – and save time and money – with a few simple strategies. A good rule of thumb is to minimize the angle of overhangs on your part as much as possible: inclines of 45 degrees and beyond generally require supports, while those under 45 degrees do not. Similarly, you may be able to anchor certain parts by making the required support a part of the design, or adjusting the orientation of the part on the build plate. Finally, you may choose a more ‘support friendly’ printing method: powder bed 3D printing processes, like HP MJF, do not require parts to be designed with supports since the powder in which they are made is self-supporting.

3. Reduce Warping

If you’re just beginning your additive manufacturing journey, it’s possible that the available additive materials, and their properties, will be unfamiliar.

In particular, 3D printing processes tend to cause materials to warp (especially on large, flat surfaces). Warping may occur as a result of different temperature variables: in the FDM process, material filament is extruded at a high temperature, then cooled. In SLA and DLS printing, parts go through a post-print baking process. In the HP MJF process, warping occurs as a result of sintering, which takes place in a heated bed of material and involves post-print cooling. Some 3D printing processes are more prone to warping than others: the corners of FDM 3D prints, for example, may warp and rise from the print bed as they go through thermal contraction.

It may be possible to address warping by ensuring that 3D printers are correctly calibrated, or by ensuring that parts have suitable adhesion to the print bed. The warping effect may also be mitigated in design by reducing the number of sharp edges or overhanging elements on a part, or by rounding its corners to distribute the thermal stress more evenly. Similarly, long or thin parts have a higher tendency to warp so thickening those parts during design can reduce the effect. Working with experienced partners, like SyBridge, is a good way to prevent warping (when possible) since we can ensure that all equipment calibration is handled correctly prior to printing.

4. Consider Wall Thickness

3D printing technology is capable of achieving impressive precision and of producing parts with very fine details – including extremely thin parts. However, like injection molded parts, the thinner a 3D printed part, the more likely it is that errors occur during the printing process: features that are too thin risk deforming or detaching from the part before the resin can cool. Similarly, any extremely thin parts may end up exacerbating any subsequent warping as the part cools post-production. Even if a thin part makes it through the print process, it may be damaged by any necessary cleaning, finishing, or post-processing.

With those factors in mind, you should ensure that you design your parts to the minimum wall thickness recommended for the 3D printing technology that you are using. SyBridge engineers will work with you to determine a suitable wall thickness for your part – and to manage any unique challenges associated with your design.

5. Explore Creative Opportunities

3D printing technology brings opportunities to streamline and optimize the production process in ways that would not be possible with other manufacturing methods. Those opportunities include lightweighting parts without compromising their strength by removing material. One of the most effective lightweighting methods for 3D printed parts is to design with lattices: crosshatch structures that can be tessellated along any axis, that use up less 3D printing material, and that reduce a part’s overall weight.

Think creatively about DFAM optimization opportunities. The lattice, for example, is found in numerous naturally-occurring structures, including in beehives and coral – indeed the natural world represents a vast resource for further DFAM optimization ideas, offering a spectrum of potentially-useful design inspirations. Beyond their weight, parts may be optimized for properties including toughness, elongation to failure, and heat transfer – metrics which have corollaries in the structural properties of human bone, for example, and which may be emulated (to varying extents) by 3D printing technology.

The Value of DFAM Expertise

Advances in technology are changing the additive manufacturing landscape but they haven’t eliminated the importance of human engineering input. When making the transition to DFAM even the best engineers can benefit from third-party experience and expertise — or simply from having an external sounding board — as they design for 3D printing technology.

In short, while there are plenty of available DFAM resources to explore, in-person problem solving remains indispensable. So whether you need help optimizing existing designs, or starting a design from scratch, the engineering team at SyBridge is ready to help you: reach out today to get started.

The post Five Tips to Help You Design for Additive Manufacturing appeared first on SyBridge Technologies.

]]>
The 4 Biggest Design Mistakes for Injection Molding https://sybridge.com/biggest-design-mistakes-injection-molding/ Tue, 15 Feb 2022 02:30:00 +0000 https://sybridge.com/?p=3629 Originally published on fastradius.com on February 14, 2022 Many companies turn to injection molding services to cost-effectively produce a high volume of identical parts. Plastic injection molding involves melting thermoplastics in a heated barrel before injecting the molten …

The post The 4 Biggest Design Mistakes for Injection Molding appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on February 14, 2022

Many companies turn to injection molding services to cost-effectively produce a high volume of identical parts. Plastic injection molding involves melting thermoplastics in a heated barrel before injecting the molten material into a durable, precise metal mold via a pressurized nozzle. Once the material has cooled and hardened, the part is ejected, and the process is repeated. Companies use this manufacturing process to produce everything from electronics housings to water bottles.

Injection molding is a complex process, and one mistake can cause cosmetic flaws, compromise product integrity, and lead to expensive redesigns. The good news is most of these problems are avoidable as long as you follow design best practices. Here are 4 of the most common mistakes you need to watch out for as you design a part for injection molding.

4 of the most common injection molding mistakes and how to solve them

1. Designing with undercuts

An undercut is any recessed surface, protrusion, groove, overhang, thread, snap-fit, or other feature that prevents a part’s ejection from its mold. Undercuts can result in increased manufacturing costs, part complexity, and mold maintenance requirements, so it’s best to eliminate any potential undercuts whenever possible.

injection molding undercut
This injection molding undercut makes it difficult to eject, damaging the part.

If you have an undercut that’s essential to your part’s design, there are a few ways to improve part ejection. Reorienting problematic features so that they’re parallel to the draw line is a cost-effective solution. This allows the part to eject without sustaining damage, eliminating the undercut. If you have parts with internal undercuts or faces without draft angles, you can also use lifters to ease the ejection process. You may be able to form undercut features by clever design of holes and slots in the part, which our Fast Radius engineers can help guide you through.

2. Having non-uniform wall thickness

Having uniform wall thickness helps molten plastic flow through the mold cavity in a single direction, allowing the material to fill the cavity more precisely. However, since thinner walls cool faster than thicker walls, variations in wall thickness can cause sink, warp, short shots, and more.

Changes in wall thickness
Changes in wall thickness can cause sink, warp, short shots, and more.

To avoid these problems and ensure all areas of your part cool at the same rate, use consistent wall thicknesses. Wall thicknesses between 1.2mm and 3mm are best in most cases. If you must have walls of varying thicknesses, you should:

  • Make the transition between thin and thick sections as gradual as possible — Best design practice is to use coring and ribbing in place of changing wall thickness or minimize changes when they are needed.
  • Use correct rib and boss thickness — Ribs and bosses should not exceed 40 – 80% of the base wall thickness with a base radius of 25 – 40% of wall thickness.
  • Remove plastic from the thickest areas — This is called coring, and it can help keep your wall sections uniform.

3. Forgetting draft angles

Adding draft, a slight taper to each vertical surface of the part, is essential for a smooth ejection. A part designed without draft may stick to the mold, and a lack of draft can also cause unsightly drag lines if the part’s vertical walls scrape against the metal mold during ejection. By adding a gentle taper, you can protect your part against friction, ensure a uniform finish, and reduce wear, tear, and warping during ejection.

draft angles
Incorporating draft angles can make ejecting your part easier and minimize the potential for defects.

Draft angle degrees depend on several factors, from wall thickness to surface texture. You’ll need to consider the material’s shrink rate, the part’s end-use function, and the depth of draw to determine the right draft angle, so it’s best to connect with an experienced manufacturing partner to get an accurate assessment. As a general rule, you should use at least 1.5 to 2 degrees of draft and add 1 degree for each inch of cavity depth. If your part has a heavily textured surface, you may need 5-degree draft angles to prevent drag lines.

4. Including sharp corners

Not only do sharp edges and corners require more pressure to fill, but they often cause parts to stick to the mold during ejection. Since sharp corners also make it more difficult for shots to flow through molds, they can result in vacuum voids, or areas where air bubbles become trapped. These can cause cosmetic damage, increase stress concentration, and result in part failure, so it’s important to round out your internal and external edges and corners whenever possible.

When designing corners, remember to model your corners to have consistent wall thickness. That means internal corners are filleted to 50% of wall thickness and external corners are 150%.

Sharp corners
Sharp corners create varying wall thickness, while curved edges can maintain uniform wall thickness.

Prevent defects on injection-molded parts with SyBridge

Injection molding design mistakes can set production back weeks, increase costs, and result in sub-par or even unusable parts. Taking the time to make thoughtful design decisions at the beginning of your project is essential and will save you time and money in the long run. However, there’s a lot to keep in mind, so working with an experienced injection molding partner like SyBridge can help you get the design right the first time.

When you partner with SyBridge, you’ll gain access to our team of engineers, advisors, and design experts who can help you through the entire manufacturing process. Whether you need help subtly incorporating draft into your design or deciding on an appropriate wall thickness, SyBridge can help you design the best possible part. Contact us today to get started on the design for your next injection molding project.

The post The 4 Biggest Design Mistakes for Injection Molding appeared first on SyBridge Technologies.

]]>
The 4 Biggest Design Mistakes for CNC https://sybridge.com/biggest-design-mistakes-cnc/ Tue, 01 Feb 2022 02:29:00 +0000 https://sybridge.com/?p=3628 Originally published on fastradius.com on January 31, 2022 Computer numerical control (CNC) machining is a popular choice among manufacturers today, and it’s easy to see why. Not only is CNC machining …

The post The 4 Biggest Design Mistakes for CNC appeared first on SyBridge Technologies.

]]>
Originally published on fastradius.com on January 31, 2022

Computer numerical control (CNC) machining is a popular choice among manufacturers today, and it’s easy to see why. Not only is CNC machining compatible with a wide range of plastics and metals, but it’s also a reliable manufacturing process capable of producing precise and durable parts. Computer-programmed cutting tools remove material from a solid block to reveal a final product that meets your exact specifications, each and every time. However, if you’re not implementing CNC design best practices, you might find production times and costs creeping higher and higher.

CNC machine drilling blue plastic

At SyBridge, our team has spent years guiding product teams through the CNC machining process, so we know which pitfalls to look out for. Here are the four most common mistakes we’ve seen designers make when designing for CNC and how to solve them.

4 CNC design mistakes that are costing you time and money

1. Designing sharp internal corners

Since CNC bits are round, achieving sharp internal angles is expensive and time-consuming. Machining a 90° angle with a round bit is impossible because a round tool will always create a corner radius when milling an internal vertical edge, preventing parts from fitting together properly or causing end mills to grind to a halt mid-process.

Designing rounded corners eliminates the sharp internal corner issue altogether, but if your design calls for internal angles, design them with radii and soften them by increasing the corner radii. Having corner radii with the same diameter as the cutter can cause chatter and excessive tool wear, while corner radii that are too small will necessitate your machinist using several smaller bits at lower speeds. Increasing your corner radii by as little as 0.005” will help you save money and prevent errors.

If you have a square male part, you can use dog-bone or t-bone fillets to ensure it will fit within a female cavity with slightly rounded internal corners. Just make sure to design the entry point for your dog-bone fillet 15-20% larger than your router bit’s diameter.

Three CNC corner examples

2. Including thin walls

Some product teams might design their part with thin walls to minimize material usage, but this “solution” causes more problems than it solves. Too-thin walls can cause part failure and warp, and they can compromise surface finish and machining process accuracy in metals. Thin walls can also snap, bend, or chip during machining due to the machining forces behind CNC cutting tools and excessive vibrations.

Thin wall example

The ideal wall thickness for your part varies depending on which material is being CNC machined. For example, a wall thickness of 0.8 mm is fine when CNC machining aluminum. However, 1.5mm is the ideal minimum wall thickness for plastics. Also, keep in mind that the taller your wall is, the thicker it will need to be to increase its rigidity. Consult an experienced CNC manufacturing partner to ensure your measurements are correct.

If your design requires tall, thin walls, try to maintain a width-to-height ratio of 3:1. You can also add a slight draft to accelerate machining and reduce the amount of leftover material.

3. Having machined text

While CNC mills can engrave or emboss text and symbols onto parts with a high level of precision, machining text can cost you. First, your machinist will have to use a separate cutting tool for the text. Then, you have to consider the amount of time — and, by extension, money — machining text will add to your project because the small end mills that cut text are relatively slow.

The good news is that if you need to have text on your part, you have a few options. If you need to machine text, opt for recessed text instead of raised text so the machine doesn’t have to remove material from across the part’s entire surface. You can also have your machinist add the text post-machining. Laser marking parts after they’ve been CNC-machined, for example, can save you time and money.

4. Including deep cavities, holes, and threads

Milling tools have a finite length, and their length determines how deep you should make cavities. In most cases, milling tools are most efficient and accurate when milling cavities up to double or triple their diameter in depth. Milling cavities that are any deeper can extend lead times, cause tool deflection or fracture, or result in chatter and chip evacuation difficulty. They may even require more expensive specialist cutting tools.

It’s best to avoid designing parts with deep cavities altogether, but if your part needs a deep cavity, hole, or thread, you should decrease the cavity’s depth as much as possible. Also, keep the milling tool’s length in mind.

CNC Final feature example

Design thoughtfully with SyBridge

Making thoughtful design decisions can save you time and money in the long run, but it can be tricky. You’ll need to have a thorough understanding of your part, its function, the CNC manufacturing process, your materials, and more. If you need some help, work with an experienced CNC manufacturing partner like SyBridge.

With a team of design and engineering experts and the latest design and manufacturing technologies, SyBridge has everything you need to optimize your parts, striking the perfect balance between cost and accuracy. Contact us today to connect with our experts and get started.

The post The 4 Biggest Design Mistakes for CNC appeared first on SyBridge Technologies.

]]>